Spin Physics with W's at RHIC

Ernst Sichtermann, for the STAR and Phenix Collaborations

PANIC'05 - Section III.5 Santa Fe, NM - October 24, 2005

- Introduction and Motivation
- RHIC: new opportunities to study spin and QCD
- Experiment: Challenges, Needs, and Sensitivity
- Summary and Outlook

W's and PDFs at Colliders

$$pp \rightarrow u, \bar{d} \quad \bar{u}, d$$

$$p\bar{p} \rightarrow u, d$$

W's and PDFs at Colliders

A prime example is the Forward-Backward Charge Asymmetry,

$$A(y_W) = \frac{d\sigma^{W^+}/dy_W - d\sigma^{W^-}/dy_W}{d\sigma^{W^+}/dy_W + d\sigma^{W^-}/dy_W} \simeq \frac{u(x_a)d(x_b) - d(x_a)u(x_b)}{u(x_a)d(x_b) + d(x_a)u(x_b)}$$

which is sensitive to u/d.

- + hard scale,
- + convolution with V-A decay,
- + theory under control analysis beyond NLO,
- + sensitive to u/d, albeit at large |rapidity|

RHIC - a new laboratory for studying spin in QCD

c.f..: W. Fischer, RHIC Upgrades for Heavy Ions and Polarized Protons, section XII. I

Measurements of:

2002-4: Engineering runs 200GeV, <Ipb- $^{-1}$, $P\sim40\%$ > $A_{\rm LL}$, ΔG J. Kiryluk section III.2, K. Boyle section III.4 2005: I Iwk pp physics run 200GeV, \sim 3pb- $^{-1}$, $P\sim45\%$

... + successful first fills at 4 I 0GeV!

2009: 200GeV Physics complete (~320pb-1, P~70%) start of 500GeV (800 pb-1, P~70%)

What is the (anti-)Flavor Composition of the Nucleon Spin? Clues from the unpolarized nucleon,

non-perturbative - very clear need to measure $\Delta \bar{u}, \Delta u, \Delta \bar{d}, \Delta d$

Note: $R_W(y, M_W^2) = \frac{\sigma^{W^+}}{\sigma^{W^-}} = \frac{u(x_a)\bar{d}(x_b) + \bar{d}(x_a)u(x_b)}{d(x_a)\bar{u}(x_b) + \bar{u}(x_a)d(x_b)}, \quad x \simeq 0.15 \text{ at midrapidity} \quad \text{from RHIC (?)}$

W-bosons as Polarimeters

Experiment Signature: large p_T lepton, missing E_T

$$\Delta \sigma^{\text{Born}}(\vec{p}p \to W^+ \to e^+\nu_e) \propto -\Delta u(x_a)\bar{d}(x_b)(1+\cos\theta)^2 + \Delta\bar{d}(x_a)u(x_b)(1-\cos\theta)^2$$

Spin Measurements:

$$A_L(W^+) = \frac{-\Delta u(x_a)\bar{d}(x_b) + \Delta\bar{d}(x_a)u(x_b)}{u(x_a)\bar{d}(x_b) + \bar{d}(x_a)u(x_b)} = \begin{cases} -\frac{\Delta u(x_a)}{u(x_a)}, & x_a \to 1\\ \frac{\Delta\bar{d}(x_a)}{\bar{d}(x_a)}, & x_b \to 1 \end{cases}$$

$$A_L(W^-) = \begin{cases} -\frac{\Delta d(x_a)}{d(x_a)}, & x_a \to 1\\ \frac{\Delta\bar{u}(x_a)}{\bar{u}(x_a)}, & x_b \to 1 \end{cases}$$
 charge-ID at large |rapidity|!

charge-ID at large |rapidity|!

STAR:

STAR Measurements:

 $-1 < \eta < 2$, $\Delta \phi = 2\pi$, electron

Phenix:

Phenix Measurements:

central arm $|\eta| < 0.35$, $\Delta \phi = \pi$, electron

muon arm $1.2 < |\eta| < 2.4, \quad \Delta \phi = 2\pi, \quad \text{muon}$

- Charge-ID at large |rapidity|
- Suppression of charged hadron background:

Need ~ 10^3 suppression of charged hadrons to make a p_T > 20 GeV/c measurement possible,

Remaining Z background may allow measurement of charge-ID efficiency.

Illustration for Phenix Central Region, similar for STAR.

STAR:

E/p selection	~I0,
Isolation	~I0,
Missing E _T	~I0,
Longitudinal shower profile	
	>103

TPC tracking breaks down in forward region, i.e. need forward tracking upgrade.

Phenix (focussing on the muon arms):

Absorber
$$\sim 100$$
, Isolation ~ 5 , Shower profile m_T with nose-cone cal. $> 5.10^2$

~12MHz collision rate, ~10kHz bandwidth, i.e. need muon trigger upgrade.

STAR (not to scale):

Current technology choice:
Forward Silicon Strip Disks,
GEM Endcap Calorimeter Tracker,

Participation: MIT, LBNL, Yale, ANL, BNL,

IUCF, Zagreb

DoE Proposal 2006

Phenix:

Technology choice:
Resisitive Plate Chambers
Fast Front-End Electronics

Kyoto, RBRC, UC-Riverside, UIUC, ...

NSF and other proposals, completion 2009_{11/13}

-0.5

0.5

Phenix:

Summary and Outlook

- RHIC pp at 500 GeV opens new channels to study spin and QCD,
- Leptonic W decays:
 - + hard scale (W-mass),
 - + convolution of W production with V-A decay,
 - + theory under control analyses beyond NLO,
 - + sensivity complementary to and eventually surpasses SIDIS

Needs:

upgrades (relatively modest) to Phenix and STAR, continued machine development - success in 2005: 410 GeV, high integrated luminosity

- I look forward to 500GeV running soon, opportunities with hadronic W, Z decays (?) while machine performance is developed.
- RHIC's impact on PDFs has come online, see e.g. posters by J. Webb (STAR EndCap π^0), J. Seele (Phenix η), talk by Q.Xu (STAR $\Lambda, \bar{\Lambda}$) in section III.7, S. Heppelman (STAR transverse) in section III.6, and others in addition to A_{LL} (STAR jets, Phenix $\pi^0, J/\psi$).